
Chapter 8

Representations of two
compact groups.

8.1 Representations of the permutation group

Permutations on n symbols is the set of one to one mappings σ of a set
X = {x1, x2, . . . , xn} of n elements on to itself. It is a finite group G with n!
elements. Given σ ∈ G we can look at the orbits of σnx and it will partition
the speace X into orbits A1, A2, . . . , Ak consisting of n1 ≥ . . . ≥ nk points
so that n = n1 + · · ·+ nk. If σ̂ = sσs−1 is conjugate to σ then the orbits of
σ̂ will be sA1, sA2, . . . , sAk so that the partition n1 ≥ . . . ≥ nk of n into k
numbers will be the same for σ and σ̂. Conversely if σ and σ̂ have the same
partition of n, then the orbits A1, . . . , Ak and B1, . . . , Bk can be so arranged
that the corresponding orbits have the same cardinality. We can find s ∈ G
that maps Ai → Bi in a one-to-one and onto manner and we can reduce the
problem to the case where Ai = Bi for every i. We can now relablel the
points with in each Ai i.e. find a permutation of ni elements, such that both
σ and σ̂ look the same on each Ai. We can now prove the following theorem.

Theorem 8.1. The number of distinct inequivalent irreducible representa-
tions of G is the same as the number of distinct partitions P(n) of the integer
n.

Proof. The space U of functions u that are invariant under conjugation i.e
satisfy u(h−1gh) = u(g) is spanned by characters and its dimension equals
the number of conjugacy classes, i.e the number of distinct sequences n1 ≥
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n2 ≥ · · · ≥ nk > 0 such that n = n1 + · · · + nk. This is the same as the
number of distinct partitions of n.

We will now construct a distinct irreducible representation for each par-
tition of n. Given a partition λ of n into n1 ≥ n2 ≥ · · · ≥ nk, we associate a
diagram called the Young diagram corresponding to λ. It looks like

when n = 9 and the partition is 3, 3, 2, 1. Each set in the partition is a row
consisting of squares whose number is the number of elements in that set.
The rows are arrnged in decreasing order of their size and aligned on the left.
A Young tableau t is a diagram λ with the boxes filled in arbitrarily by the
numbers 1, 2, · · · , 9, like

4 1 8

5 2 7

3 6

9

The rows of the array are of length n1 ≥ · · · ≥ nk. For any diagram there
are n! tableaux. The tableaux t above has rows [4, 1, 8], [5, 2, 7] [3, 6] and
[9]. A tabloid is when the order of entries with in a row is not relevant. The
tabloid τ = {t} consists of {1, 4, 8}, {2, 5, 7}, {3, 6}, {9}. There are n!

n1!···nk!
tabloids corresponding to a diagram λcorresponding to the partition n1 ≥
n2 ≥ · · · ≥ nk. The subgroup Ct of the permutation group consists of
permutations within each column. In our case it consists of 4!×3!×2! = 288
elements. An arbitrary permutation of 4, 5, 3, 9, an arbitrary permutation of
1, 2, 6 and one of 8, 7. For any permutation s, σ(s) = ±1 is the sign of the
permutation. We define an abstract inner product space V − λ of dimension

n!
n1!···nk!

with the orthonormal basis eτ as τ varies over all the tabloids of the
diagram λ. We define n! vectors ft in Vλ as t varies over the set T of tableau
of the diagram λ. {t} is the tabloid that is the equivalence class of all the
tableaux that are obtained by permutations with in rows of the tableaux
t. The group element, namely a permutation s acts naturally on the set of
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tableaux T. If two tableaux t1 and t2 belong to the same tabloid so do st1
and st2. Therefore s acts on the set T of tabloids as well. Define

ft =
∑

s∈Ct

σ(s)es{t}

The {ft : t ∈ T} may not be linearly independent and the span of {ft} is
denoted by W . One defines a representation of πλ(g) of the permutation
group on Vλ and Wλ corresponding to the diagram λ by defining

πλ(g)ft = gft =
∑

s∈Ct

σ(s)egs{t}

Theorem 8.2. Each πλ is irreducible. For two distinct diagrams they are
inequivalent. We therefore have all the representations.

Proof is broken up into lemmas.

Lemma 8.3.
πλ(g)ft = fgt

Proof.

∑

s∈Ct

σ(s)egs{t} =
∑

s∈Ct

σ(s)egsg−1g{t}

=
∑

gsg−1∈Cgt

σ(s)egsg−1g{t}

=
∑

s′∈Cgt

σ(s′)es′gt = fgt

Lemma 8.4. Suppose λ, µ are two different diagrams, t a λ-tableaux and t∗

a µ-tableaux. Suppose ∑

s∈Ct

σ(s)es{t∗} ≠ 0

Then n1 ≥ m1, n1 + n2 ≥ m1 +m2, · · · where n1, . . . , nk and m1, . . . , mℓ are
the two partitions corresponding to λ and µ. We say then that λ ≥1 µ. If
λ = µ then the sum is ±ft.
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Proof. Suppose that two elements a, b are in the same row of t∗ and in the
same column of t. Then the permutation p = {a ↔ b} is in Ct, esp{t} = es{t},
with σ(sp) + σ(s) = 0. So the sum adds up to 0 which is ruled out. Hence,
no two elements in the same row of t∗ can be in the same column of t. In
particular t must have at least as many columns as the number of elements
in the first row of t∗ proving n1 ≥ m1. A variant of this argument proves
λ ≥1 µ. Suppose now that λ = µ. Again all the elements in any row of t∗

appear in different columns of t. Then there is a permutation s∗ ∈ Ct such
that s∗t = t∗. The sum is unaltered if we replace t by s∗t except for the
factor of σ(s∗) = ±1.

Lemma 8.5. Let u ∈ V corresponding to a diagram λ. Let t be any λ-
tableau. Then ∑

s∈Ct

σ(s)πλ(s)u = cft

Proof. u is a linear combination of e{t∗} for different tabloids {t∗} correspond-
ing to λ . Each one from the previous lemma yields c(t∗)ft with c(t∗) = 0,±1.
Add them up!

Let us define

At =
∑

s∈Ct

σ(s)πλ(s)

acting on V . We already have an inner product that makes π(s) orthogonal.

< Atu, v > =
∑

s∈Ct

σ(s) < π(s)u, v >

=
∑

s∈Ct

σ(s) < u, π(s−1)v >

=
∑

s∈Ct

σ(s) < u, π(s)v >

=< u,Atv >

because σ(s−1) = σ(s).

Lemma 8.6. If Uλ is any invariant subspace of V then either Uλ ⊃ Wλ or
Uλ ⊥ Wλ. This proves the irreducibility of Wλ.
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Proof. Suppose for some u ∈ Uλ ⊂ Vλ and t is a λ-tableau. We saw that
Atu = ctft for some constant ct. Suppose for some u ∈ Uλ and t, ct ≠ 0.
Then ft = 1

ct
Atu ∈ Uλ. Since π(g)ft = fgt and {fgt} span Wλ, it follows

that Wλ ⊂ Uλ. If ct = 0 for all u and t, Atu = 0 and it follows that

< u, ft >= ± < u,Atft >= ± < Atu, ft >= 0

and u ∈ W⊥.

Lemma 8.7. Let T intertwine the representations on Vλ and Vµ. Suppose
Wλ is not contained in Ker T . Then λ ≥1 µ.

Proof. Ker T is invariant under π(g) and if it does not contain Wλ it is
orthogonal to it.

0 ≠ Tft = TAtft = AtTft

Tft is a combination of e{t} of µ-tableau {t}. So at least one of them Ate{t}
is nonzero forcing λ ≥1 µ.

Lemma 8.8. If T ≠ 0 intertwines Wλ and Wµ, then λ = µ.

Proof. Extend T by making it 0 on (Wλ)⊥ and we see that λ ≥1 µ. The
argument is symmetric.
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8.2 Representations SO(3)

We will consider the irreducible representations of the group G of rotations
in R3. These are orthogonal transformations of determinant 1, i.e. that
preserve orientation. An element g ∈ G is represented as the matrix

⎡

⎣
t1,1(g) t1,2(g) t1,3(g)
t2,1(g) t2,2(g) t2,3(g)
t3,1(g) t3,2(g) t3,3(g)

⎤

⎦

There is the trivial representation π0(g) ≡ I. Then there is a natural
three dimensional representation where π1(g) = t(g) = {ti,j(g)} and it can
be viewed as a unitary representation in C3. This representation is irreducible
and faithful, i.e. it separates points of G.

As we saw in the general theory, the characters can be used to identify
the irreducible representations. It helps to know what the conjugacy classes
are. Given two orthogonal matrices g1 and g2, when can we find a g such
that gg1g−1 = g2? The eigen values of g1 are 1, e±iθ1 and therefore in order
for g1 and g2 to be mutually conjugate we neeed θ1 = ±θ2 or cosθ1 = cos θ2.
Conversely one can show that that if g1 and g2 have the same eigenvalues then
they are indeed conjugate. If we use a g to align the eigenspace correponding
to 1, then we need to show essentially that rotation by θ and−θ are conjugate.
We can use the matrix ⎡

⎣
−1 0 0
0 1 0
0 0 −1

⎤

⎦

to achieve this.
We will use the infinitesimal method to study irreducible representations.

If A = {ai,j} is a real skewsymmetric matrix then gt = etA defines a one
parameter curve in G, and if π is a unitary representation on a complex
vector space V , then Ut = π(gt) = eitσ(A) for some skew symmetric σ(A).
This way we get a map A → σ(A) from the space of real skewsymmetric
3× 3 matrices into complex skewhermitian matrices on V .

The way to understand this map is to think of G as three dimensional
manifold and the vector space of real skewsymmetric 3 × 3 matrices as the
tangent space at e. In fact there are global vector fields acting on functions
defined on G corresponding to any skew symmetric A,

(XA)f(g) =
d

dt
f(getA)|t=0
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Then
σ(A) = (XA)π(e)

and from the representation property

(XA)π(g) = π(g)σ(A)

XAXB = σ(A)σ(B)

The Poisson bracket [XA, XB] = XAXB−XBXA is to equal X[AB−BA] and we
get this a way a representation σ of the ”Lie Algebra” of 3× 3 skewsymmet-
ric matices in the space of skewhermitian trnasfromations on V . Moreover
σ([A,B]) = [σ(A), σ(B)]. G acts irreducibly on V if and only if σ(A) acts
irreducibly. We pick a basis A1, A2, A3 where

A1 =

⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦ A2 =

⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ A3 =

⎡

⎣
0 1 0
−1 0 0
0 0 0

⎤

⎦

Let us note that

[A1, A2] = −A3, [A2, A3] = −A1, [A3, A1] = −A2

If we define σ(A1) = H and Z1 = σ(A2) + iσ(A3), Z2 = σ(A2)− iσ(A3), we
can calculate

[H,Z1] = σ([A1, A2]) + iσ([A1, A3]) = −σ(A3) + iσ(A2) = iZ1

[H,Z2] = σ([A1, A2])− iσ([A1, A3]) = −σ(A3)− iσ(A2) = −iZ2

H being skewhermitian on V , it has purely imaginary eigenvalues and a
complete set of eigenvectors. Let V = ⊕λViλ be the decomposition of V
into eigenspaces of H . Moreover e2πH = π(e2πA1) = π(e) = I The values λ
are therefore all integers. If Hv = iλv, then HZ1v = Z1Hv + [H,Z1]v =
iλZ1v + iZ1v = i(λ+ 1)Z1v. Therefore Z1 maps Viλ → Vi(λ+1) and similarly
Z2 maps Viλ → Vi(λ−1). It is clear that if we start with some v0 ∈ Viλ

then v0, {Zk
1v0 : k ≥ 1}, {Zk

2v0 : k ≥ 1} are all mutually orthogonal. Since
the space is finite dimensional, Zr

1v0 = Zs
2v0 = 0 for some r, s. If we take

r, s to be the smallest such values, then the subspace generated by them has
dimension r+s−1 and is invariant under H,Z1, Z2. Since the representation
is irreducible, this must be all of V . Another piece of information is that H
and −H are conjugate. The set of λ’s is therefore symmetric around the
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origin. Hence V is odd dimensional and is {λ} = {−k, . . . , 0, . . . , k} for some
integer k ≥ 0. This exhausts all possible irreducible representations in the
infinitesimal sense and therefore the set of irreducible representations of G
cannot be larger. The character of such a representation if it exists is seen
to be

χk(g) = χ̂k(θ) =
k∑

j=−k

exp[i jθ]

where 1, e±i θ are the eigenvalues of g. We will try construct them as the
natural action of G on the space of homogeneous harmonic polynomials of
degree k. This dimension is calculated as (k+1)(k+2)

2 − k(k−1)
2 = 2k + 1. H

which is the infinitesimal rotation around x-axis is calculated as

H = z
∂

∂y
− y

∂

∂z

The polynomials p±k = (y±iz)k are harmonic in two and therefore three vari-
ables and Hp±k = ±ikp±k . Therefore this representation has the eigenvlaues
±ik for H and cannot be decomposed totally in terms of representations of
dimension (2k− 1) or less. On the other hand its dimension is only (2k+1).
This is it.

Since we know that
∫
G
χk(g)χℓ(g)dg = δk,ℓ it is convenient to determine

the weight w(θ) on [0, π] such that it is the probability density of θ(g) of a
random g uniformly distributed over G. Then

∫ π

0

χ̂k(θ)χ̂ℓ(θ)w(θ)dθ = δk,ℓ

In particular, since χ̂1(θ) ≡ 1, for k ≥ 2
∫ π

0

[χ̂k(θ)− χ̂k−1(θ)]w(θ)dθ = 0

or
w(θ) = a+ b cos θ

Normalization of
∫ π
0 w(θ)dθ = 1 gives a = 1

π
. The orthogonality relation∫ π

0 1.(1 + 2 cos θ)w(θ)dθ = 0 provides a + b = 0 or

w(θ) =
1− cos θ

π


